Reduced SIRT1 expression correlates with enhanced oxidative stress in compensated and decompensated heart failure

نویسندگان

  • Feridun Akkafa
  • Ibrahim Halil Altiparmak
  • Musluhittin Emre Erkus
  • Nurten Aksoy
  • Caner Kaya
  • Ahmet Ozer
  • Hatice Sezen
  • Serdar Oztuzcu
  • Ismail Koyuncu
  • Berrin Umurhan
چکیده

Sirtuin-1 (SIRT1) is a longevity factor in mammals initiating the cell survival mechanisms, and preventing ischemic injury in heart. In the etiopathogenesis of heart failure (HF), impairment in cardiomyocyte survival is a notable factor. Oxidative stress comprises a critical impact on cardiomyocyte lifespan in HF. The aim of the present study was to investigate SIRT1 expression in patients with compensated (cHF) and decompensated HF (dHF), and its correlation with oxidative stress. SIRT1 expression in peripheral leukocytes was examined using quantitative RT-PCR in 163 HF patients and 84 controls. Serum total oxidant status (TOS) and total antioxidant status (TAS) were measured via colorimetric assays, and oxidative stress index (OSI) was calculated. Lipid parameters were also determined by routine laboratory methods. SIRT1 mRNA expression was significantly downregulated in HF with more robust decrease in dHF (p=0.002, control vs cHF; p<0.001, control vs dHF). Markedly increased oxidative stress defined as elevated TOS, OSI and low TAS levels were detected in HF patients comparing with the controls (TAS; p=0.010, control vs cHF, p=0.045 control vs dHF, TOS; p=0.004 control vs cHF; p<0.001 control vs dHF, OSI; p<0.001 for both comparisons, respectively). With SIRT1 expression levels, TAS, TOS, OSI, and high density lipoprotein levels in cHF and dHF were determined correlated. SIRT1 expression were significantly reduced in both HF subtypes, particularly in dHF. SIRT1 expression was correlated with the oxidant levels and antioxidant capacity. Data suggest that SIRT1 may have a significant contribution in regulation of oxidant/antioxidant balance in HF etiology and compensation status.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resveratrol-enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice

Autophagic dysfunction is observed in diabetes mellitus. Resveratrol has a beneficial effect on diabetic cardiomyopathy. Whether the resveratrol-induced improvement in cardiac function in diabetes is via regulating autophagy remains unclear. We investigated the mechanisms underlying resveratrol-mediated protection against heart failure in diabetic mice, with a focus on the role of sirtuin 1 (SI...

متن کامل

Endothelial cell activation in patients with decompensated heart failure.

BACKGROUND Vascular endothelial functions, other than nitric oxide (NO)-mediated control of vasomotor tone, are poorly characterized in patients with chronic heart failure (CHF). Veins and arteries are exposed to the same circulating proinflammatory mediators in patients with CHF. The present study tested whether endothelial cell activation occurs in veins of patients with decompensated CHF and...

متن کامل

Cardiac dysfunction is attenuated by ginkgolide B via reducing oxidative stress and fibrosis in diabetic rats

Objective(s): Diabetic cardiomyopathy is a leading factor of high morbidity and mortality in diabetic patients. Our previous results revealed that ginkgolide B alleviates endothelial dysfunction in diabetic rats. This study aimed to investigate the effect of ginkgolide B on cardiac dysfunction and its mechanism in diabetic rats.Materials and Methods:<...

متن کامل

SIRT1 suppresses doxorubicin-induced cardiotoxicity by regulating the oxidative stress and p38MAPK pathways.

BACKGROUND SIRT1, which belongs to the Sirtuin family of NAD-dependent enzymes, plays diverse roles in aging, metabolism, and disease biology. It could regulate cell survival and has been shown to be a protective factor in heart function. Hence, we verified the mechanism by which SIRT1 regulates doxorubicin induced cardiomyocyte injury in vivo and in vitro. METHODS We analyzed SIRT1 expressio...

متن کامل

SIRT1 protects against myocardial ischemia–reperfusion injury via activating eNOS in diabetic rats

BACKGROUND Diabetic patients are more sensitive to myocardial ischemic injury than non-diabetic patients. Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent histone deacetylase making the heart more resistant to ischemic injury. As SIRT1 expression is considered to be reduced in diabetic heart, we therefore hypothesized that up-regulation of SIRT1 in the dia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015